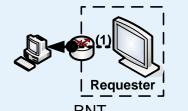
AUTHONE

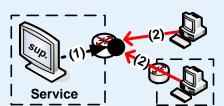
Technische Universität München

Chair for Network Architectures and Services

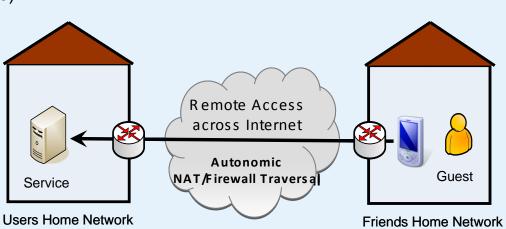
Prof. Dr.-Ing. Georg Carle

Andreas Müller Contact: [mueller]@net.in.tum.de · http://www.net.in.tum.de

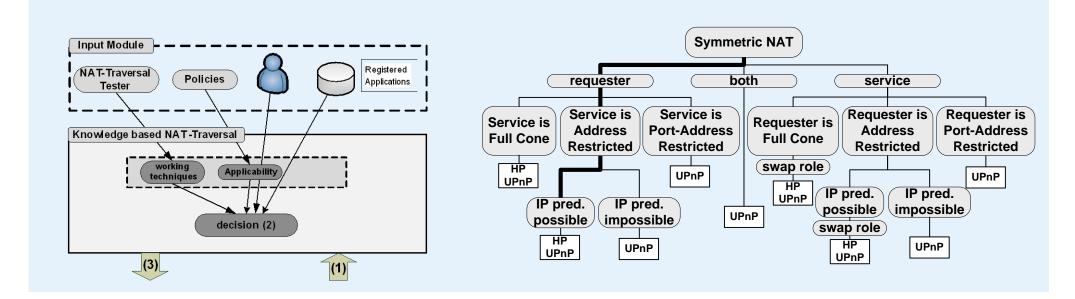

Remote Access


Motivation

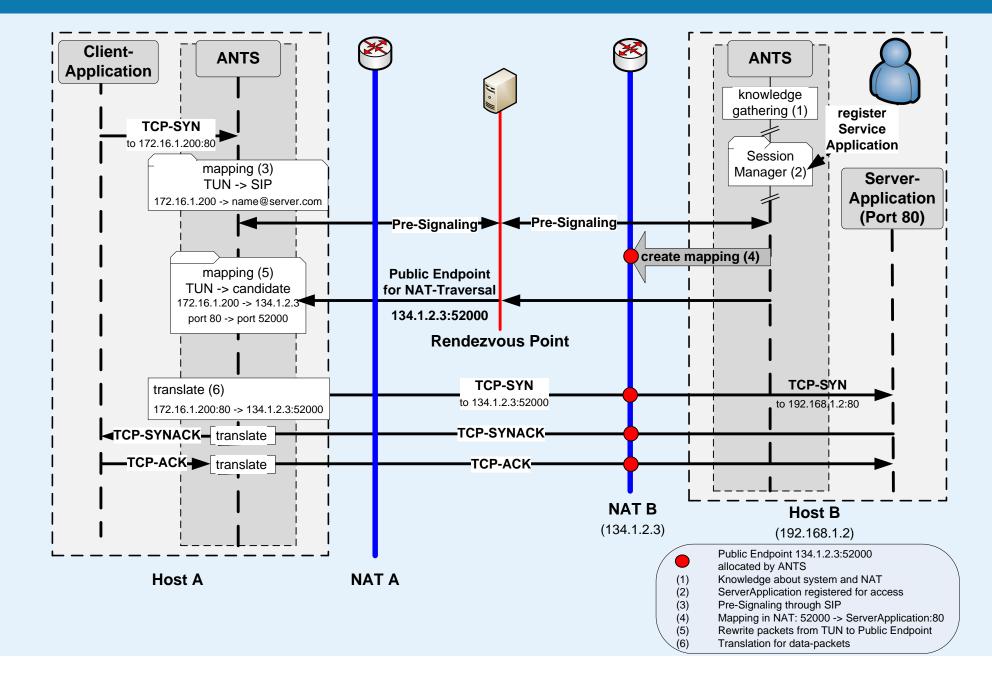
- Easy communication between different networks necessary
 - Access to the video disk recorder
 - P2P applications
 - Facility management applications
- Most homes use Network Address Translastion (NAT) to access the Internet
 - NAT breaks the end-to-end connectivity model of the Internet
 - NAT/FW-Traversal problem
- Existing solutions to the problem and their drawbacks
 - Explicit support by the NAT is needed
 - ALG, UPnP, NAT-PMP
 - NAT-behavior based approaches


NAT Traversal Service Categories

- Not only the success rate of a NAT-Traversal technique counts
 - Four NAT-Traversal Service Categories were identified for different scenarios
- Each makes assumptions about the available infrastructure
 - Support at the NAT itself (e.g. an ALG or UPnP)
 - The requester (STUN or signaling)
 - The service (UPnP support at service)
 - The network (presence of infrastructural nodes)
- Requester side NAT-Traversal (RNT)
 - Applications that actively initiate a connection (e.g. SIP/SDP)

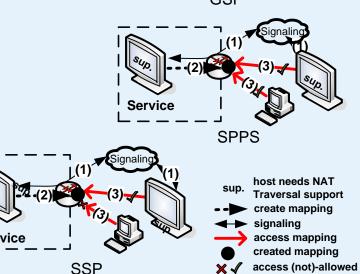


- Dependent on knowledge about the NAT
- Hole-Punching using STUN (IETF RFC 3489)
- External Data-Relay (TURN) (IETF Draft)
 - Routing Overhead
 - Single Point of Failure
- Frameworks
 - ICE: no TCP, not for legacy applications

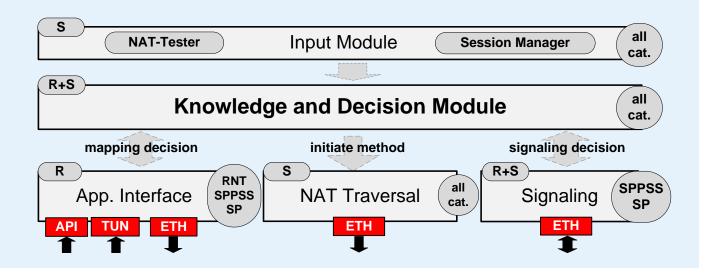


ANTS – a knowledge based approach

- □ The main idea is to create the mapping based on knowledge about the system
 - Which techniques are supported by the NAT
 - What is the NAT constellation
 - Applicability knowledge regarding accessibility of the mapping
 - · Which techniques work with the requested Service Category
 - Hole-Punching with GSP only if Full-Cone NAT
 - UPnP not suitable for Secure Service Provisioning
 - User-preferences and policies
 - Switch to UPnP (although unsecure) if nothing else works
 - UPnP may be faster for SSP dependent on the number of consecutive connections



Reference Example for SSP


Global Service Provisioning (GSP)

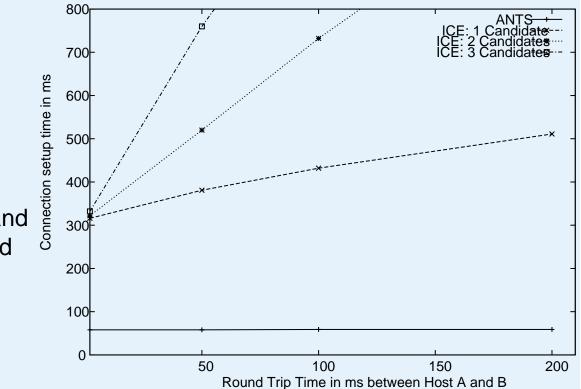
- Service should be globally accessible (e.g. a web server)
- Service Provisioning using Pre-Signaling (SPPS)
 - Pre-Signaling through Rendezvous-Point
- Secure Service Provisioning (SSP)
 - Only authorized users can allocate mappings
 - Created mapping can only be accessed by the creator

Architecture

- ANTS architecture consists of three layers and five modules
- Input Module
 - Session manager holds registered applications
 - NAT-Tester for gathering knowledge
- Knowledge and Decision Module
 - Makes decisions for the other modules
- Application Interface
 - ANTS socket API: for new applications
 - TUN-based approach: for legacy applications
- NAT Traversal Module
- Actual techniques □ Signaling Module
 - Parsing of XML-Messages
 - Communication with the RP

Evaluation

Reliability Evaluation


- Success rates for different NAT-Traversal techniques
- Results adapted to our defined service categories
- We did a public field test covering > 1200 different NATs in the wild
- NAT-Tester and detailed results at <u>http://nattest.net.in.tum.de</u>

Propabilities for a direct connection

- UDP Traversal: 85%
- TCP Traversal: 82%
- TCP inclusive tunneling: 95%
- Otherwise: Data relay

Performance Evaluation

- ANTS vs. ICE
- Introduced delay much smaller and constant due to knowledge based approach

